Abstract

The chemical profile of Teucrium polium L. (T. polium) methanolic extract was tested using liquid chromatography coupled with high resolution mass spectrometry (HR-LCMS). Disc diffusion and microdilution assays were used for the antimicrobial activities. Coxsackievirus B-3 (CVB3) and Herpes simplex virus type 2 (HSV-2) were used for the antiviral activities. Chromobacterium violaceum (ATCC 12472 and CV026) and Pseudomonas aeruginosa PAO1 were used as starter strains for the anti-quorum sensing tests. Isoprenoids are the main class of compounds identified, and 13R-hydroxy-9E,11Z-octadecadienoic acid, valtratum, rhoifolin, sericetin diacetate, and dihydrosamidin were the dominant phytoconstituents. The highest mean diameter of growth inhibition zone was recorded for Acinetobacter baumannii (19.33 ± 1.15 mm). The minimal inhibitory concentrations were ranging from 6.25 to 25 mg/mL for bacterial strains, and from 6.25 to 25 mg/mL for Candida species. The 50% cytotoxic concentration on VERO (African Green Monkey Kidney) cell lines was estimated at 209 µg/mL. No antiviral activity was recorded. Additionally, T. polium extract was able to inhibit P. aeruginosa PAO1 motility in a concentration-dependent manner. However, the tested extract was able to inhibit 23.66% of the swarming and 35.25% of swimming capacities of PAO1 at 100 µg/mL. These results highlighted the role of germander as a potent antimicrobial agent that can interfere with the virulence factors controlled by the quorum-sensing systems.

Highlights

  • Aromatic and medicinal plants’ history is associated with the evolution of civilizations and occupies a crucial place in medicine, cosmetology, and culinary preparations in China, India, the Middle East, Egypt, Saudi Arabia, and Greece [1,2,3,4,5,6]

  • Our results showed the identification of 29 molecules in T. polium methanolic extract using the HR-LCMS technique

  • The results showed that T. polium methanolic extract has no effect on the violacein production in the microtiter plate assay using the mutant strain C. violaceum

Read more

Summary

Introduction

Aromatic and medicinal plants’ history is associated with the evolution of civilizations and occupies a crucial place in medicine, cosmetology, and culinary preparations in China, India, the Middle East, Egypt, Saudi Arabia, and Greece [1,2,3,4,5,6]. Control of microorganisms, especially multidrug-resistant pathogens, is increasingly important for the development of effective treatment against infectious diseases [13,14,15,16]. New approaches have been proposed to fight microbial resistance, such as nanotechnology [17], to use natural products due to their healing potential. This idea dates back to ancient times and has been taken up and developed in recent years, especially against multi-drug resistant human pathogenic microorganisms [18,19,20,21]. Plants—especially aromatic/medicinal ones—appear to be a potential source of antimicrobial agents due to their richness in alkaloids, anthraquinones, saponins, terpenoids, tannins, and polyphenols [22,23]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call