Abstract

Phenolic constituents and essential oil from the aerial parts of Cistus creticus subsp. eriocephalus (Viv.) Greuter et Burdet growing in central Italy were analysed by HPLC-MSn and GC–MS, respectively. Furthermore, six constituents were isolated by semipreparative HPLC from the methanol extract and their structures were determined on the basis of 1D and 2D NMR measurements as well as MS spectra. Isolated compounds were one new natural product, i.e. the shikimic acid ester 3,5-diihydroxy-4-(O-β-d-glucopyranosyl)-cyclohex-1-en-1-(O-β-d-glucopyranosyl)-ester (27), and six flavonoid glycosides, namely quercetin-3-O-β-D glucopyranoside (16), quercetin-3-O-rhamnoside (17), tricetin-4′-O-β-D glucopyranoside (24), tricetin-4′-O-β-D rutinoside (21), 3′-methoxy-quercetin-3-O-(3-β-Dglucopyranosyl-2-rhamnopyranosil-4-glucopyranosyl-2-rhamnopyranosil)-glucoside (25) and 3′,4′dimethoxyquercetin-3-O-rhamnopyranoside (26). GC–MS analysis of the essential oil highlighted the occurrence of aliphatic compounds, mainly fatty acids, whereas labdane-type compounds were very scant. Our results showed that C. creticus subsp. eriocephalus has a different chemical profile with respect to the other subspecies due to the lack of labdane derivatives. On the other hand, this subspecies contains several phenolic constituents like ellagitannins, gallotannins and flavonoids, some of which can be of chemotaxonomic value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.