Abstract

Previously tested n-hexane extracts of the Scorzonera latifolia showed promising bioactivity in vivo. Because triterpenes could account for this activity, n-hexane extracts were analyzed by HPLC to identify and quantify the triterpenes as the most abundant constituents. Other Scorzonera and Podospermum species, potentially containing triterpenic aglycones, were included in the study. An HPLC method for simultaneous determination of triterpene aglycones was therefore developed for analysis of Podospermum and Scorzonera species. n-Hexane extracts of root and aerial parts of S. latifolia, ten other Scorzonera species and two Podospermum species were studied to compare the content of triterpenes. HPLC was used for the qualitative and quantitative analysis of α-amyrin, lupeol, lupeol acetate, taraxasteryl acetate, 3-β-hydroxy-fern-7-en-6-one acetate, urs-12-en-11-one-3-acetyl, 3-β-hydroxy-fern-8-en-7-one acetate, and olean-12-en-11-one-3-acetyl. Limits of detection and quantification were determined for each compound. HPLC fingerprinting of n-hexane extracts of Podospermum and Scorzonera species revealed relatively large amounts of triterpenes in a majority of investigated taxa. Lupeol, lupeol acetate, and taraxasteryl acetate were found in a majority of the species, except S. acuminata. The presence of α-amyrin, 3β-hydroxy-fern-7-en-6-one-acetate, urs-12-en-11-one-3-acetyl, 3β-hydroxy-fern-8-en-7-one-acetate, and olean-12-en-11-one-3-acetyl was detected in varying amounts. The triterpene content could correlate with the analgesic and anti-inflammatory activity of Scorzonera, which was previously observed and Scorzonera species that have been determined to contain triterpenes in large amounts and have not yet been tested for their analgesic activity should be tested for their potential analgesic and anti-inflammatory potential. The presented HPLC method can be used for analysis of triterpene aglycones, for example dedicated to chemosystematic studies of the Scorzonerinae.

Highlights

  • Scorzonera genus belonging to Asteraceae family is widely distributed in Eurasia and northern AfricaScorzonera genusIn belonging to Asteraceae family is widely in species, Eurasia and northern with about 160 species.Turkey, this genus is represented by 59distributed taxa, and 52 of which31 are Africa with about species

  • This paper describes the development and validation of an HPLC method for the identification of

  • Content of α-amyrin (6) was determined in relatively high amount as 1646 ± 10 μg·g−1 and 1102 ± 6 μg·g−1 for roots and aerial parts of S. acuminata, respectively. This is the first report of triterpenes in P. canum, P. laciniatum, S. acuminata, S. eriophora, S. incisa, S. mirabilis, S. mollis, S. parviflora, S. suberosa, and S. sublanata

Read more

Summary

Introduction

Scorzonera genus belonging to Asteraceae family is widely distributed in Eurasia and northern AfricaScorzonera genusIn belonging to Asteraceae family is widely in species, Eurasia and northern with about 160 species.Turkey, this genus is represented by 59distributed taxa, and 52 of which31 are Africa with about species. Scorzonera genus belonging to Asteraceae family is widely distributed in Eurasia and northern Africa. Scorzonera genusIn belonging to Asteraceae family is widely in species, Eurasia and northern with about 160 species. Turkey, this genus is represented by 59distributed taxa, and 52 of which. Turkey, this genus is represented by taxa, and species, of which endemic [1]. Podospermum genus (Asteraceae), represented by several tens of species, is closely related to 31 are endemic. Podospermum (Asteraceae), by several tensof ofthe species, is closely.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call