Abstract
Intensive research on hyperaccumulator plant species provides an alternative method to cleanup heavy metal contaminated sites using these plants. Helianthus annuus and Tagetes erecta are suitable hyperaccumulator plant species for removing zinc (Zn) from contaminated soil because of their high phytoremediation effectiveness. The present study focused on to evaluate comparative efficacy of Zn accumulation using H. annuus and T. erecta. Plantlets were exposed to different Zn concentrations (10, 50, 100, 300, and 500 mg kg−1) for 20, 40, and 60 days while changes in morphological, biochemical, and enzyme activity markers were evaluated. The concentration of Zn in various plant parts was determined using an atomic absorption spectrophotometer (AAS). After 60 days H. annuus showed greatest accumulation of Zn in the root and shoot (216.7 and 109.5 mg kg−1), whereas the Zn accumulation T. erecta (209.5 and 97.84 mg kg−1) was found comparatively less in the root and shoot. The result showed increased polyphenol and proline concentrations with increasing Zn concentrations which were maximal in H. annuus 6.642 mg g−1 and 25.474 µmol g−1, respectively. At 60 days, APX (4.145 mM mg−1), CAT (2.558 mM mg−1), and GR (52.23 mM mg−1) antioxidant enzymatic activities were observed with higher concentrations. Analysis of ultrastructure confirmed Zn transport and localization in root and shoot tissues examined through FESEM-EDX, Fluorescence microscopy, and optical microscopy. The present research findings concluded with the high amount of removal of Zn from contaminated soil using H. annuus and T. erecta for ecofriendly approach to soil cleanup followed by sustainable agriculture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.