Abstract

Chromium (Cr) is a biologically non-essential, carcinogenic and toxic heavy metal. The cultivation of Cr-tolerant genotypes seems the most favorable and environment friendly strategy for rehabilitation and remediation of Cr-contaminated soils. To prove this hypothesis and identify the Cr tolerance, the present study was performed to assess the physiological and biochemical response of sunflower genotypes to Cr stress. The seeds of six sunflower hybrids, namely FH-425, FH-600, FH-612, FH-614, FH-619, and FH-620, were grown in spiked soil for 12weeks under increasing concentrations of Cr (0, 5, 10, and 20mgkg-1). A seed germination test was also run under different concentrations of Cr (0, 5, 10, 200 mM) in petri dishes. Plants were harvested after 12 weeks of germination. Different plant attributes such as growth; biomass; photosynthesis; gas exchange; activity of antioxidant enzymes, i.e., superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate (APX), and catalases (CAT); reactive oxygen species (ROS); lipid peroxidation; electrolyte leakage; and Cr concentration as well as accumulations in all plant parts were studied for the selection of the most Cr-tolerant genotype. Increasing concentration of Cr in soil triggered the reduction of all plant parameters in sunflower. Cr stress increased electrolyte leakage and production of reactive oxygen species which stimulated the activities of antioxidant enzymes and gas exchange attributes of sunflower. Chromium accumulation in the root and shoot increased gradually with increasing Cr treatments and caused reduction in overall plant growth. The accumulation of Cr was recorded in the order of FH-614 > FH-620 > FH-600 > FH-619 > FH-612 > FH-425. The differential uptake and accumulation of Cr by sunflower hybrids may be useful in selection and breeding for Cr-tolerant genotypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.