Abstract

Phytic acid-assisted sludge hydrothermal carbonization was employed to synthesize phytic acid-modified hydrochar via a one-step method. The surface morphology, pore structure, elemental composition, functional groups, and thermal stability of the phytic acid-modified hydrochar were characterized. Sorption kinetics and isotherm experiments were conducted to investigate the effects of humic acid, temperature, and pH on the sorption process of cadmium (Cd) onto the phytic acid-modified hydrochar. The Cd fixation ability was evaluated through soil passivation experiments. The results demonstrated that the surface of the phytic acid-modified hydrochar exhibited an abundance of phosphoric acid groups, enhanced electronegativity, and thermal stability. Furthermore, both the sorption rate and maximum sorption capacity for Cd increased by 1.88 times and 1.22 times compared to that in unmodified hydrochar, respectively, owing to the presence of phosphoric acid groups that enhanced complexation and electrostatic interaction with Cd. Elevated temperatures, higher pH values, and coexistence with humic acids were beneficial for enhancing Cd sorption onto phytic acid-modified hydrochar. When heavy metals such as Cu, Zn, and Pb coexisted, the sorption capacity of phytic acid-modified hydrochar for Cd was 0.77-6.88 times higher than that for other metals. Phyic acid-modified hydrochar exhibited excellent efficiency in fixing Cd (56.1%-81.l%), mitigating the loss of available nutrients in soil and significantly increasing the AP content in the soil. In conclusion, the use of phytic acid-modified hydrochar could effectively remove Cd from water and serve as a promising soil amendment for stabilizing soil Cd content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.