Abstract

Background and objectiveThe pharmacokinetics (PK) of methylphenidate (MPH) differ significantly among individuals. Carboxylesterase 1 (CES1) is the primary enzyme metabolizing MPH, and its function is affected by genetic variants, drug-drug interaction (DDI), and sex. The object of this study is to evaluate CES1 pharmacogenetics as related to MPH metabolism using human liver samples and develop a physiologically-based pharmacokinetic (PBPK) modeling approach to investigate the influence of CES1 genotypes and other factors on MPH PK. MethodsThe effect of the CES1 variant G143E (rs71647871) on MPH metabolism was studied utilizing 102 individual human liver S9 (HLS9) fraction samples. PBPK models were developed using the population-based PBPK software PK-Sim® by incorporating the HLS9 incubation data. The established models were applied to simulate MPH PK profiles under various clinical scenarios, including different genotypes, drug-alcohol interactions, and the difference between males and females. ResultsThe HLS9 incubation study showed that subjects heterozygous for the CES1 variant G143E metabolized MPH at a rate of approximately 50% of that in non-carriers. The developed PBPK models successfully predicted the exposure alteration of MPH from the G143E genetic variant, ethanol-MPH DDI, and sex. Importantly, the study suggests that male G143E carriers who are alcohol consumers are at a higher risk of MPH overexposure. ConclusionPBPK modeling provides a means for better understanding the mechanisms underlying interindividual variability in MPH PK and PD and could be utilized to develop a safer and more effective MPH pharmacotherapy regimen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.