Abstract
The genetic polymorphism of cytochrome P450 (CYP) 2D6 is characterized by an excessive impact on positive and adverse drug reactions to antipsychotics, such as risperidone. Consequently, the pharmacokinetics of the drug and metabolite can be substantially altered and exhibit a high variability between the different phenotypes. The goal of this study was to develop a physiologically based pharmacokinetic (PBPK) model considering the CYP2D6 genetic polymorphism for risperidone and 9-hydroxyrisperidone (9-OH-RIS) taking CYP3A4 into account. Additionally, risperidone dose adjustments, which would compensate for genetically caused differences in the plasma concentrations of the active moiety (sum of risperidone and 9-OH-RIS) were calculated. Based on available knowledge about risperidone, 9-OH-RIS, and relevant physiological changes according to different CYP2D6 phenotypes, several PBPK models were built. In addition, an initial model was further evaluated based on the plasma concentrations of risperidone and 9-OH-RIS from a single-dose study including 71 genotyped healthy volunteers treated with 1mg of oral risperidone. PBPK models were able to accurately describe risperidone exposure after single-dose administration, especially in the concentration range ≥ 1µg/L, illustrated by a minimal bias and a good precision. About 90.3% of all weighted residuals versus observed plasma concentrations ≥ 1µg/L were in the ± 30% range. The risperidone/9-OH-RIS ratio increased progressively according to reduced CYP2D6 activity, resulting in a mean ratio of 4.96 for poor metabolizers. Simulations demonstrate that dose adjustment of the drug by - 25% for poor metabolizers and by - 10% for intermediate metabolizers results in a similar exposure to that of extensive metabolizers. Conversely, the risperidone/9-OH-RIS ratio can be used to determine the phenotype of individuals. PBPK modelling can provide a valuable tool to predict the pharmacokinetics of risperidone and 9-OH-RIS in healthy volunteers, according to the different CYP2D6 phenotypes taking CYP3A4 into account. These models are able to ultimately support decision-making regarding dose-optimization strategies, especially for subjects showing lower CYP2D6 activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.