Abstract

Salinization of freshwater is occurring throughout the world, affecting freshwater biota that inhabit rivers, streams, ponds, marshes and lakes. There are many freshwater insects, and these animals are important for ecosystem health. These insects have evolved physiological mechanisms to maintain their internal salt and water balance based on a freshwater environment that has comparatively little salt. In these habitats, insects must counter the loss of salts and dilution of their internal body fluids by sequestering salts and excreting water. Most of these insects can tolerate salinization of their habitats to a certain level; however, when exposed to salinization they often exhibit markers of stress and impaired development. An understanding of the physiological mechanisms for controlling salt and water balance in freshwater insects, and how these are affected by salinization, is needed to predict the consequences of salinization for freshwater ecosystems. Recent research in this area has addressed the whole-organism response, but the purpose of this Review is to summarize the effects of salinization on the osmoregulatory physiology of freshwater insects at the molecular to organ level. Research of this type is limited, and pursuing such lines of inquiry will improve our understanding of the effects of salinization on freshwater insects and the ecosystems they inhabit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call