Abstract

A modelling approach is proposed to evaluate the environmental dynamics of coastal lagoons. The water, heat and salt balances are addressed simultaneously, providing a better estimation of evaporation and water exchanges. Compared to traditional approaches, the model presented accounts for the effects of water salinity, heat storage and net energy advected in the water body. The model was applied daily to the Mar Menor coastal lagoon (SE Spain) from 2003 through 2006. Water exchanges with the Mediterranean Sea were estimated based on the monthly trend of the lagoon salinity and were correlated with monthly averages of wind speed. The mean daily water exchange with the sea was 1.77 hm 3 d −1. This exchange accounted for only 1% of the heat losses in the lagoon heat balance, and it is the most important flow in the water balance. The mean annual evaporation flux amounted to 101.3 W m −2 (3.55 mm d −1), while the sensible heat flux amounted to 19.7 W m −2, leading to an annual Bowen ratio on the order of 0.19. To validate the model, daily water temperatures were predicted based on the daily heat balance of the water body and were compared with remote sensing data from water surface standard products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.