Abstract

Understanding the adaptability of Chionanthus retusus Lindl. et Paxt. to extreme water conditions will help in exploring the potential application of this species in barren mountains. Three-year-old Chionanthus retusus seedlings were used in a greenhouse pot experiment that analyzed the effect of different moisture gradients on growth, photosynthetic and fluorescence characteristics, protective enzyme system, osmotic substance regulation and cell membrane damage. The results indicated that C. retusus can effectively grow at a relative soil water content of 44.6% and above and can maintain growth for 20 days under flooded conditions. Under drought stress, net photosynthesis rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and intercellular carbon dioxide concentration (Ci) all showed a trend of gradual decrease. The trend of change was similar under waterlogging conditions. The maximal quantum yield of PSII photochemistry (Fv/Fm), actual photochemical efficiency of PSII (ΦPSII), photochemical quenching coefficient (qP), and electron transport rate (ETR) all decreased as drought deepened. Malondialdehyde (MDA) content decreased first and then increased. However, superoxide dismutase (SOD) activity content, peroxidase (POD) activity content, and proline (Pro) activity content showed a trend of increasing and then decreasing. C. retusus had good adaptability in the slight drought treatment group and flooded treatment group but showed intolerance in the high drought group, which could still last for approximately 21 days. C. retusus was found to have a strong adaptability to water stress and can be used as an afforestation tree in barren mountains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call