Abstract
ABSTRACTThis study aims to explain the effects of silicon (Si) foliar application on gas exchange characteristics, photosynthetic pigments, membrane stability and leaf relative water content of different wheat cultivars in the field under drought stress conditions. The experiment was arranged as a split-split plot based on randomized complete block design with three replications. Irrigation regime (100%, 60%, and 40% F.C.), silicon (control and Si application) and wheat cultivars (Shiraz, Marvdasht, Chamran, and Sirvan) were considered as main, sub and sub-sub plots, respectively. This study was carried out at the Research Farm of the Collage of Agriculture, Shiraz University, Iran, during 2012–2013 growing season. The results showed that foliar application of silicon increased the leaf relative water content, photosynthesis pigments (chlorophyll a, b and total chl and carotenoids), chlorophyll stability index (CSI) and membrane stability index (MSI) in all wheat cultivars, especially in Sirvan and Chamran (drought tolerant cultivars), under both stress and non-stress conditions. However, more improvement was observed under drought stress as compared to the non-stress condition. In contrast, these parameters decreased under drought stress. Si significantly decreased electrolyte leakage in all four cultivars under drought stress conditions. Furthermore, the intercellular carbon dioxide (CO2) concentration (Ci) increased under drought stress. Si application decreased Ci especially under drought stress conditions. Net photosynthesis rate (A), transpiration rate (E) and stomatal conductance (gs) were significantly decreased under drought conditions. Under drought, Si applied plants showed significantly higher leaf photosynthesis rate, transpiration rate, and stomatal conductance. Intrinsic water use efficiency (WUEi) and carboxylation efficiency (CE) decreased in all cultivars under drought stress. However, the silicon-applied plants had greater WUEi and CE under drought stress. The stomatal limitation was found to be higher in stressed plants compared to the control. Exogenously applied silicon also decreased stomatal limitation. Overall, application of Si was found beneficial for improving drought tolerance of wheat plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.