Abstract

Long-term of excessive fertilization using nitrogen (N) chemical fertilizer caused the acidification of paddy soils. Presently, the impacts of soil acidification on physiological characteristics of diazotrophic cyanobacteria remain unknown. In order to elucidate this issue, the effects of paddy floodwater acidification on activities of respiration, photosynthetic oxygen evolution, and N2 fixation of a paddy diazotrophic cyanobacterium Aliinostoc sp. YYLX235 were investigated in this study. In addition, the origination and quenching of intracellular reactive oxygen species (ROS) were analyzed. The acidification of paddy floodwater decreased intracellular pH and interfered in energy flux from light-harvesting chlorophyll antenna to the reaction center of photosystem II (PS II). Activities of respiration, photosynthetic oxygen evolution, and N2 fixation were decreased by the acidification of paddy floodwater. Accompanied with an increase in ROS, the level of antioxidative system increased. Superoxide dismutase (SOD) and catalase (CAT) were the main enzymatic ROS scavengers in the cells of YYLX235; reduced glutathione (GSH) was the main non-enzymatic antioxidant. Antioxidants and oxidants in the cells of YYLX235 lost balance when the pH of paddy floodwater fell to 5.0 and 4.0, and lipid oxidative damage happened. The results presented in this study suggest that the acidification of paddy soil severely interfered in the photosynthesis of diazotrophic cyanobacteria and induced the production of ROS, which in turn resulted in oxidative damage on diazotrophic cyanobacteria and a decrease in cell vitality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.