Abstract
To investigate the low-temperature adaptability of different provenances of Ziziphus jujuba var. spinosa, we used 21 clones from seven provenances as experimental materials and observed the changes in physiological and biochemical indicators and the characteristics of anatomical structures under low-temperature stress. A comprehensive evaluation of their cold resistance was conducted using the membership function method. As the temperature decreased, the relative electrical conductivity (REC) of clone 89 became stable and had the lowest LT50 value (−44.04 °C). The cold-resistant Z. jujuba var. spinosa had a higher bound water/free water (BW/FW) ratio and antioxidant enzyme activity and accumulated large quantities of osmotic regulatory substances. Higher xylem, phloem, and xylem–cortex ratios and greater conduit density enhanced the cold resistance of Z. jujuba var. spinosa. The membership function values of clones 89, 90, 91, 604, and 612 were greater than 0.6, indicating that they could be evaluated as resources with the potential for low-temperature resistance. The cold resistance rankings for the different provenances were as follows: Kazuo, Liaoning > Jiaxian, Shaanxi > Fuxing, Heibei > Changqing, Shandong > Neiqiu, Heibei > Yanchuan, Shaanxi > Xiaxian, Shanxi. These results provide a scientific basis for the rapid and accurate identification of cold resistance in Z. jujuba var. spinosa resources and the breeding and cultivation of new cold-resistant varieties of this subspecies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.