Abstract
Recent reports have uncovered the multifunctional role of H2S in the physiological response of plants to biotic and abiotic stresses. Here, we studied whether NaHS (an H2S donor) pretreatment could provoke the tolerance of cucumber (Cucumis sativus L.) seedlings subsequently exposed to chilling stress and whether glutathione was involved in this process. Results showed that cucumber seedlings sprayed with NaHS exhibited remarkably increased chilling tolerance, as evidenced by the observed plant tolerant phenotype, as well as the lower levels of electrolyte leakage (EL), malondialdehyde (MDA) content, hydrogen peroxide (H2O2) content and RBOH mRNA abundance, compared with the control plants. In addition, NaHS treatment increased the endogenous content of the reduced glutathione (GSH) and the ratio of reduced/oxidized glutathione (GSH/GSSG), meanwhile, the higher net photosynthetic rate (Anet), the light-saturated CO2 assimilation rate (Asat), the photochemical efficiency (Fv/Fm) and the maximum photochemical efficiency of PSII in darkness (ФPSII) as well as the mRNA levels and activities of the key photosynthetic enzymes (Rubisco, TK, SBPase and FBA) were observed in NaHS-treated seedlings under chilling stress, whereas this effect of NaHS was weakened by buthionine sulfoximine (BSO, an inhibitor of glutathione) or 6-Aminonicotinamide (6-AN, a specific pentose inhibitor and thus inhibits the NADPH production), which preliminarily proved the interaction between H2S and GSH. Moreover, transcription profiling analysis revealed that the GSH-associated genes (GST Tau, MAAI, APX, GR, GS and MDHAR) were significantly up-regulated in NaHS-treated cucumber seedlings, compared to the H2O-treated seedlings under chilling stress. Thus, novel results highlight the importance of glutathione as a downstream signal of H2S-induced plant tolerance to chilling stress.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have