Abstract
Rapid transfer of zander Stizostedion lucioperca to hypoosmotic brackish water (mean osmolality 230 mOsmol kg–1, c. 8 psu) significantly increased plasma chloride concentrations after 24 h compared to those transferred to fresh water, although plasma osmolality was not significantly affected. After 6 days, plasma osmolality was slightly elevated but stable plasma glucose and cortisol concentrations and blood haematocrit and haemoglobin suggest a lack of hormonal stress responses and resultant secondary effects. Rapid transfer of zander to a more saline environment, hyperosmotic to plasma (mean osmolality 462 mOsmol kg‐1, c. 16 psu) induced a greater increase in plasma osmolality and chloride concentrations within 24 h, with a further rise after 6 days exposure, but all fish maintained a state of hypo‐osmoregulation both 24 h and 6 days after transfer. The initial osmotic disturbance (at 24 h) was accompanied by increased plasma glucose, blood haematocrit and haemoglobin and a decreased mean cell haemoglobin concentration (MCHC), suggesting an adrenergic stress response, but these parameters fully recovered within 6 days of exposure to this hyperosmotic environment with MCHC rising to exceed the level in freshwater fish. Zander did not survive rapid transfer to more hyperosmotic conditions (750 or 1001 mOsmol kg‐1, 26‐35 psu), but they did survive exposure to simulated‘tidal cycles’ of rising and declining salinity, peaking after 6 h at c. 29 or 33 psu. Although osmotic disturbance was apparent after 6 h exposure and other physiological parameters suggested both adrenergic and corticosteroid components of a stress response, rapid recovery was apparent after return to fresh water. The results indicate that the zander, a non‐indigenous species in the U.K., has a high level of osmotic tolerance and a degree of hypo‐osmoregulation in saline environments not found in most stenohaline freshwater teleosts. This osmoregulatory ability could enable invasion of new U.K. river systems by using inshore marine environments of low salinity as saltwater bridges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.