Abstract
Kaolin applications have been used to mitigate the negative effects of water and heat stress on plant physiology and productivity with variable results, ranging from increased to decreased yields and photosynthetic rates. The mechanisms of action of kaolin applications are not clear: although the increased albedo reduces leaf temperature and the consequent heat stress, it also reduces the light available for photosynthesis, possibly offsetting benefits of lower temperature. The objective of this study was to investigate which of these effects are prevalent and under which conditions. A 6% kaolin suspension was applied on well-irrigated and water-stressed walnut (Juglans regia) and almond (Prunus dulcis) trees. Water status (i.e. stem water potential, psi(s)), gas exchange (i.e. light-saturated CO2 assimilation rate, Amax; stomatal conductance, g(s)), leaf temperature (T(l)) and physiological relationships in treated and control trees were then measured and compared. In both species, kaolin did not affect the daily course of psi(s) whereas it reduced Amax by 1-4 micromol CO2 m(-2) s(-1) throughout the day in all combinations of species and irrigation treatments. Kaolin did not reduce g(s) in any situation. Consequently, intercellular CO2 concentration (C(i)) was always greater in treated trees than in controls, suggesting that the reduction of Amax with kaolin was not due to stomatal limitations. Kaolin reduced leaf temperature (T(l)) by about 1-3 degrees C and leaf-to-air vapour pressure difference (VPD(l)) by about 0.1-0.7 kPa. Amax was lower at all values of g(s), T(l) and VPD(l) in kaolin-treated trees. Kaolin affected the photosynthetic response to the photosynthetically active radiation (PAR) in almond leaves: kaolin-coated leaves had similar dark respiration rates and light-saturated photosynthesis, but a higher light compensation point and lower apparent quantum yield, while the photosynthetic light-response curve saturated at higher PAR. When these parameters were used to model the photosynthetic response curve to PAR, it was estimated that the kaolin film allowed 63% of the incident PAR to reach the leaf. The main effect of kaolin application was the reduction, albeit minor, of photosynthesis, which appeared to be related to the shading of the leaves. The reduction in T(l) and VPD(l) with kaolin did not suffice to mitigate the adverse effects of heat and water stress on Amax.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.