Abstract

Symbiodiniaceae are the source of essential coral symbionts of reef building corals. The growth and density of endosymbiotic Symbiodiniaceae within the coral host is dependent on nutrient availability, yet little is known about how Symbiodiniaceae respond to the dynamics of the nutrients, including switch between different chemical forms and changes in abundance. In this study, we investigated physiological, cytometric, and transcriptomic responses in Fugacium kawagutii to nitrogen (N)-nutrient deficiency and different chemical N forms (nitrate and ammonium) in batch culture conditions. We mainly found that ammonium was consumed faster than nitrate when provided separately, and was preferentially utilized over nitrate when both N compounds were supplied at 1:2, 1:1 and 2:1 molarity ratios. Besides, N-deficiency caused decreases in growth, energy production, antioxidative capacity and investment in photosynthate transport but increased energy consumption. Growing on ammonium produced a similar cell yield as nitrate, but with a reduced investment in nutrient transport and assimilation; yet at high concentrations ammonium exhibited inhibitory effects. These findings together have important implications in N-nutrient regulation of coral symbiosis. In addition, we identified ten highly and stably expressed genes as candidate reference genes, which will be potentially useful for gene expression studies in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call