Abstract

For accurate and reliable gene expression analysis using quantitative real-time reverse transcription PCR (qPCR), the selection of appropriate reference genes as an internal control for normalization is crucial. We hypothesized that non-coding, small nucleolar RNAs (snoRNAs) would be stably expressed in different barley varieties and under different experimental treatments, in different tissues and at different developmental stages of plant growth and therefore might prove to be suitable reference genes for expression analysis of both microRNAs (miRNAs) and mRNAs. In this study, we examined the expression stability of ten candidate reference genes in six barley genotypes under five experimental stresses, drought, fungal infection, boron toxicity, nutrient deficiency and salinity. We compared four commonly used housekeeping genes; Actin (ACT), alpha-Tubulin (α-TUB), Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ADP-ribosylation factor 1-like protein (ADP), four snoRNAs; (U18, U61, snoR14 and snoR23) and two microRNAs (miR168, miR159) as candidate reference genes. We found that ADP, snoR14 and snoR23 were ranked as the best of these candidates across diverse samples. For accurate and reliable gene expression analysis using quantitative real-time reverse transcription PCR (qPCR), the selection of appropriate reference genes as an internal control for normalization is crucial. We hypothesized that non-coding, small nucleolar RNAs (snoRNAs) would be stably expressed in different barley varieties and under different experimental treatments, in different tissues and at different developmental stages of plant growth and therefore might prove to be suitable reference genes for expression analysis of both microRNAs (miRNAs) and mRNAs. In this study, we examined the expression stability of ten candidate reference genes in six barley genotypes under five experimental stresses, drought, fungal infection, boron toxicity, nutrient deficiency and salinity. We compared four commonly used housekeeping genes; Actin (ACT), alpha-Tubulin (α-TUB), Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ADP-ribosylation factor 1-like protein (ADP), four snoRNAs; (U18, U61, snoR14 and snoR23) and two microRNAs (miR168, miR159) as candidate reference genes. We found that ADP, snoR14 and snoR23 were ranked as the best of these candidates across diverse samples. Additionally, we found that miR168 was a suitable reference gene for expression analysis in barley. Finally, we validated the performance of our stable and unstable candidate reference genes for both mRNA and miRNA qPCR data normalization under different stress conditions and demonstrated the superiority of the stable candidates. Our data demonstrate the suitability of barley snoRNAs and miRNAs as potential reference genes for miRNA and mRNA qPCR data normalization under different stress treatments.

Highlights

  • The study of gene expression has become increasingly widespread in numerous organisms

  • We evaluated ten candidate reference genes in different tissues, genotypes and experimental treatments for their ability to normalize miRNA quantitative real-time reverse transcription polymerase chain reaction (PCR) (qPCR) data

  • We found that two putative small nucleolar RNAs (snoRNAs), snoR14 and snoR23, outperformed the generally used house-keeping gene (HKG) in barley

Read more

Summary

Introduction

The study of gene expression has become increasingly widespread in numerous organisms. A commonly used method is relative quantification where data are normalized to an internal control gene [1]. The internal control gene is called a reference or house-keeping gene (HKG) and, while subjected to the same experimental factors during sampling and cDNA preparation as the gene(s) of interest, is not differentially expressed, providing a constant for relative quantification of differences in expression of the gene(s) of interest. Several studies have shown that the expression of these genes varies considerably in different cells and tissues under different experimental conditions and, in these comparisons, they become unsuitable for qPCR data normalization [9,10,11,12,13,14,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.