Abstract

BackgroundThe root rot of fragrant solomonseal (Polygonatum odoratum) has occurred frequently in the traditional P. odoratum cultivating areas in recent years, causing a heavy loss in yield and quality. The phenolic acids in soil, which are the exudates from the P. odoratum root, act as allelochemicals that contribute to the consecutive monoculture problem (CMP) of the medicinal plant. The aim of this study was to get a better understanding of P. odoratum CMP.ResultsThe phenolic acid contents, the nutrient chemical contents, and the enzyme activities related to the soil nutrient metabolism in the first cropping (FC) soil and continuous cropping (CC) soil were determined, and the differentially expressed genes (DEGs) related to the regulation of the phenolic acids in roots were analyzed. The results showed that five low-molecule-weight phenolic acids were detected both in the CC soil and FC soil, but the phenolic acid contents in the CC soil were significantly higher than those in the FC soil except vanillic acid. The contents of the available nitrogen, available phosphorus, and available potassium in the CC soil were significantly decreased, and the activities of urease and sucrase in the CC soil were significantly decreased. The genomic analysis showed that the phenolic acid anabolism in P. odoratum in the CC soil was promoted. These results indicated that the phenolic acids were accumulated in the CC soil, the nutrient condition in the CC soil deteriorated, and the nitrogen metabolism and sugar catabolism of the CC soil were lowered. Meantime, the anabolism of phenolic acids was increased in the CC plant.ConclusionsThe CC system promoted the phenolic acid anabolism in P. odoratum and made phenolic acids accumulate in the soil.

Highlights

  • The root rot of fragrant solomonseal (Polygonatum odoratum) has occurred frequently in the traditional P. odoratum cultivating areas in recent years, causing a heavy loss in yield and quality

  • Rhizosphere soil phenolic acids The rhizosphere soil phenolic acids were determined using the high-performance liquid chromatography (HPLC) method as compared to the standard samples of p-hydroxybenzoic acid, vanillic acid, syringic acid, cumaric acid, and ferulic acid with the retention time of 15.42, 19.29, 21.84, 27.16, and 28.94 min, respectively (Fig. S1A), and the above five phenolic acids were detected both in the first cropping (FC) and continuous cropping (CC) rhizosphere soil (Fig. S1B, Fig. S1C)

  • The results showed that the phenolic acid contents in the CC soil were higher than those in the FC soil

Read more

Summary

Introduction

The root rot of fragrant solomonseal (Polygonatum odoratum) has occurred frequently in the traditional P. odoratum cultivating areas in recent years, causing a heavy loss in yield and quality. The phenolic acids in soil, which are the exudates from the P. odoratum root, act as allelochemicals that contribute to the consecutive monoculture problem (CMP) of the medicinal plant. Polygonatum odoratum (Mill.) Druce, popularly known as fragrant solomonseal, is a traditional Chinese perennial medicinal plant mainly cultivated in the southern parts of China and the other Southeast Asian countries such as Thailand and Vietnam. The root rot of P. odoratum has occurred frequently in the planting areas in recent years due to the long-term continuous cropping (CC), causing the serious consecutive monoculture problem (CMP) with a sharp decline both in yield and quality. Phenolic acids are most likely to be considered as the allelochemicals that can change membrane permeability, inhibit nutrient uptake, and inactivate plant endogenous hormones to influence the normal physiological process [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.