Abstract

Low temperature is an abiotic stress factor limiting the distribution of fruit tree cultivation areas. As temperate deciduous fruit trees, apple (Malus domestica) trees go dormant in the winter to adapt to or avoid damage caused by low temperatures. The capacity for cold resistance is closely linked to the physiological, biochemical, and structural characteristics of one-year-old branches. In this study, we investigated such changes in the branches of cold-resistant ‘Hanfu’ (HF) and cold-sensitive ‘Naganofuji 2’ (CF) apple varieties. The relative electrical conductivity, malondialdehyde content, and reactive oxygen species content of HF branches were lower than those of CF branches, while the antioxidant enzyme activity was higher in HF. The proline, soluble protein, and soluble sugar contents in both varieties showed an initial increase, followed by a subsequent decrease. Sucrose and sorbitol were the main sugar components, but sucrose and fructose were higher in HF than in CF. The periderm, phloem, and xylem of HF branches were also found to be thicker than those of CF branches, while the vessel diameter was smaller and the density greater. The results of this study provide a theoretical reference for further research on the low temperature adaptability of apple tree branches during dormancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call