Abstract
The Arabidopsis thaliana NOK2 accession displays salt tolerance compared to more commonly known A. thaliana accessions, such as Col-0, but the basis of this phenotypic feature is unknown. This work was focused on determining whether salt tolerance in NOK2 plants is affected by calcium supplementation to the growth medium. A. thaliana seedlings were grown in pots containing a mixture of sand and peat under controlled conditions in a low-level Ca(NO3)2 medium supplemented with 0 or 50 mM NaCl with and without amendment with two higher levels of Ca(NO3)2. Calcium amendment was beneficial for salt-treated NOK2 plants, as shown by the increase in dry weight of NOK2 plants with and without NaCl, but had no impact on Col-0 biomass. Sodium accumulation decreased as a function of calcium amendment in NOK2, while Col-0 maintained its high Na levels under these conditions. Leaf K+ content, K+ uptake, and Ca content decreased in NOK2 and Col-0 plants growing in the low-level Ca medium when NaCl was added, but rose in leaves of both accessions with calcium amendment, although K remained low in both accessions in the absence of NaCl. K+/Na+ selectivity increased preferentially in NOK2 with increasing calcium in the presence of NaCl, but when Na was restricted and not under any conditions in Col-0. Preferential effects of calcium were not observed on the transcript accumulation of seven Na+, K+ or Ca2+ transport genes for either of the accessions, except for increased transcription of the CAX4 gene in NOK2 leaves at the highest calcium concentration used (5 mM). Leaf membrane leakage, which increased two-fold higher in Col-0 under salt application compared with the increase in NOK2, declined for both accessions in response to calcium supplementation, and in NOK2 this decline reached no salt levels when Ca2+ amendments were highest. Chlorophyll and carotenoid content dropped two-fold in Col-0 in response to salt, but were unchanged in NOK2 under these conditions. In contrast, leaf anthocyanins, which were normally tenfold higher in Col-0 than in NOK2 in the low-level Ca2+ medium, declined in Col-0 plants as a function of Ca2+ supplementation, but were maintained at low levels in NOK2 leaves regardless of salinity and calcium. In conclusion, NOK2 plants responded positively to calcium supplementation by improving biomass yield during salinity treatment, whereas this amendment only affected Col-0 by reducing its permeability and anthocyanin titre. K+/Na+ selectivity appeared to be an important characteristic of NOK2 response to calcium. The regulation of this response may involve the CAX4 Ca2+/H+ vacuolar transport gene, but does not appear to involve six other common ion transporters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have