Abstract

Zymoseptoria tritici is the causal agent of Septoria tritici blotch (STB), one of the most economically destructive wheat foliar diseases. In this study, we explore the physiological and molecular changes elicited in two wheat cultivars with divergent responses (Taichung 29 = susceptible, and Shafir = resistant) upon infection by Z. tritici. Our aim is to uncover novel insights into the intricate mechanisms that govern wheat defense against Z. tritici infection. Our quantitative histopathological study showed that H2O2 accumulated in the resistant cultivar to a higher degree compared to the susceptible cultivar at the biotrophic and switching phase. Additionally, we combined qPCR with a targeted quantitative HPLC technique to evaluate the expression profiles of 13 defense-related genes and profile the polyphenolic compounds induced differentially in the STB susceptible and resistant cultivar. Our finding indicated that five out of 13 genes were strongly up-regulated in the resistant cultivar compared with that of the susceptible one at eight days post-inoculation (dpi), corresponding to the transition phase present in the infection process of Z. tritici. Finally, our targeted HPLC analysis demonstrated that the traced phenolic compounds were highly elevated in the susceptible cultivar infected by Z. tritici compared with that of the resistant cultivar. In conclusion, our comprehensive analysis unveils a robust defense response in the resistant wheat cultivar Shafir, characterized by heightened H2O2 accumulation, significant up-regulation of key defense-related genes during the transition phase, and a distinct profile of polyphenolic compounds, shedding light on the intricate mechanisms contributing to its resistance against Z. tritici, thereby providing valuable insights for the development of more resilient wheat varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.