Abstract

Ramp controllers are required to manage their workloads effectively while handling complex operational tasks, a crucial part of improving aviation safety. The ability to detect their instantaneous workload is vital for ensuring operational effectiveness and preventing hazardous incidents. This paper introduces a novel methodology aimed at enhancing the evaluation of the ramp controller's cumulative workload by incorporating and optimizing the feature combination from eye movement, respiratory, and fatigue characteristics. Specifically, a 90-minute simulated experiment related to ramp control tasks, using real data from Shanghai Hongqiao Airport, is conducted to collect multi-type data from 8 controllers. Following data construction and the extraction of multi-type, the workloads of all samples are categorized through unsupervised learning. Subsequently, supervised learning techniques are used to calculate feature weights and train classifiers after data alignment. The optimal feature combination is established by calculating feature weights, and the best classification accuracy is over 98%, achieved by the KNN classifier. Furthermore, numerical evaluation and threshold calculations for different workload levels are interpreted. It is promising to provide insights into future works towards human-centered data construction, processing, and interpretation to promote the progress of workload assessment within the aviation industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.