Abstract

Brassica napus plants exposed to 200 μM arsenic (As) exhibited high-level of stress condition, which led to inhibited growth, enhanced lipid peroxidation, and disrupted cellular ultrastructures. Exogenous application of methyl jasmonate (MeJA) alleviated the As-induced oxidative stress and improved the plant growth and photosynthesis. In this study, changes in the B. napus leaf proteome are investigated in order to identify molecular mechanisms involved in MeJA-induced As tolerance. The study identifies 177 proteins that are differentially expressed in cultivar ZS 758; while 200 differentially expressed proteins are accumulated in Zheda 622, when exposed to As alone and MeJA+As treatments, respectively. The main objective was to identify the MeJA-regulated protein under As stress. Consistent with this, iTRAQ detected 61 proteins which are significantly accumulated in ZS 758 leaves treated with MeJA under As stress. While in Zheda 622, iTRAQ detected 49 MeJA-induced proteins under As stress. These significantly expressed proteins are further divided into five groups on the base of their function, that is, stress and defense, photosynthesis, carbohydrates and energy production, protein metabolism, and secondary metabolites. Taken together, this study sheds light on the molecular mechanisms involved in MeJA-induced As tolerance in B. napus leaves and suggests a more active involvement of MeJA in plant physiological processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.