Abstract

In mice, the caller’s production of social vocalizations has been extensively studied but the effect of these vocalizations on the listener is less understood, with playback studies to date utilizing one vocalization category or listeners of one sex. This study examines how several categories of mouse vocalizations affect listeners of both sexes to better understand the communicative functions of these vocal categories. We examined physiological and behavioral responses of male and female CBA/CaJ mice to playback of four social vocalization categories: ultrasonic vocalizations (USVs), low-frequency harmonic calls, mid-frequency vocalizations, and noisy calls. Based on the conditions under which these calls are emitted, we hypothesized that playback of these vocal categories would have differential effects on the listeners. In females, playback of all four vocalization categories increased stress hormone levels (corticosterone), but only the non-USV categories increased corticosterone in males. The magnitude of corticosterone increase in non-USV trials was greater in females than in males. In open field tests, all four vocal categories decreased central ambulation in males and females, indicating an increase in anxiety-related behavior. Further, we found that the proportions of USVs emitted by subjects, but not their overall calling rates, were affected by playback of some vocal categories, suggesting that vocalization categories have different communication content. These results show that, even in the absence of behavioral and acoustic contextual features, each vocal category evokes physiological and behavioral responses in mice, with some differences in responses as a function of the listener’s sex and playback signal. These findings suggest that at least some of the vocal categories have distinct communicative functions.

Highlights

  • The social vocalizations of mice, like those of humans and other vertebrates, reflect the internal state of the sender and influence the internal state and behavior of the listener

  • We show that: (1) there are sex differences in the plasma corticosterone levels evoked by vocalization playback; (2) that all call types evoke anxiety-like behavior in males and females; and (3) the vocal behavior of both sexes differed depending on the vocalizations being presented

  • A two-way mixed ANOVA yielded a significant interaction between trial type and sex on corticosterone (F(4,84) = 5.19, p = 0.001, partial η2 = 0.198), indicating that the physiological stress response to the vocalization categories differed between males and females

Read more

Summary

Introduction

The social vocalizations of mice, like those of humans and other vertebrates, reflect the internal state of the sender and influence the internal state and behavior of the listener. This study examines physiological and behavioral responses to four categories of mouse vocalizations in both males and females, to better understand the communicative functions of these vocal categories. Ultrasonic vocalizations (USVs), the most common category emitted by adult mice, have a fundamental frequency greater than 20 kHz (Figure 1A) and a variety of spectrotemporal patterns that range from simple to complex (Sales née Sewell, 1972; Holy and Guo, 2005; Portfors, 2007; Hammerschmidt et al, 2009; Musolf et al, 2010; Grimsley et al, 2011, 2016; Arriaga, 2014; Gaub et al, 2016). The behavioral or endocrine responses evoked by USVs in listening animals is less clear

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.