Abstract

Serotonergic cells in the medullary nucleus raphe magnus (RM) and adjacent nucleus reticularis magnocellularis (NRMC) project to the spinal cord where they are likely to modulate nociceptive transmission. Previous studies have suggested that these cells are physiologically and anatomically heterogeneous. In the present investigation, we examined whether subclasses of serotonergic RM and NRMC cells can be delineated based on their response to a visceral stimulus, and whether any such subclasses are morphologically distinct. Most RM and NRMC serotonergic cells tested (81 of 116) responded to retraction of the descending aorta into a polyethylene tube (the snare stimulus) with 57% of all cells tested excited and 13% inhibited. Responses of serotonergic cells to the snare outlasted the stimulus, were not reflective of evoked cardiovascular changes, and were observed in sino-aortic deafferented rats, evidence that the snare stimulus does not influence serotonergic cell discharge through activation of baroreceptors. Because serotonergic cells responsive to the snare were also responsive to mechanical brushing within the retroperitoneum, the snare is likely to change serotonergic cell discharge by means of the activation of mechanosensitive visceral afferents. Intracellular labeling of physiologically characterized serotonergic RM and NRMC cells showed that cells that were responsive to the snare stimulus had simpler axonal collateralization patterns than cells that were unresponsive to the snare stimulus. This association between morphological and physiological properties provides additional evidence that subpopulations of serotonergic cells exist and serve varied physiological functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.