Abstract
Atomic vapor laser isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention within the chemical physics community. For over a decade the US Department of Energy has funded an aggressive program in AVLIS at Lawrence Livermore National Laboratory. After extensive research, the underlying physical principles have been identified and optimized, the major technology components have been developed, and the integrated enrichment performance of the process has been tested under realistic conditions. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws that can be used to scope out new applications are fomulated. The two primary applications of major interest to the Department of Energy are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. In FY 1984 the total AVLIS funding level for these two missions was approximately $150M. In addition to these primary missions, a variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radio-thermal mechanical generators. We will see that the ability to rapidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have