Abstract

We discuss physical properties of `integer' topological phases of bosons in D=3+1 dimensions, protected by internal symmetries like time reversal and/or charge conservation. These phases invoke interactions in a fundamental way but do not possess topological order and are bosonic analogs of free fermion topological insulators and superconductors. While a formal cohomology based classification of such states was recently discovered, their physical properties remain mysterious. Here we develop a field theoretic description of several of these states and show that they possess unusual surface states, which if gapped, must either break the underlying symmetry, or develop topological order. In the latter case, symmetries are implemented in a way that is forbidden in a strictly two dimensional theory. While this is the usual fate of the surface states, exotic gapless states can also be realized. For example, tuning parameters can naturally lead to a deconfined quantum critical point or, in other situations, a fully symmetric vortex metal phase. We discuss cases where the topological phases are characterized by quantized magnetoelectric response \theta, which, somewhat surprisingly, is an odd multiple of 2\pi. Two different surface theories are shown to capture these phenomena - the first is a nonlinear sigma model with a topological term. The second invokes vortices on the surface that transform under a projective representation of the symmetry group. A bulk field theory consistent with these properties is identified, which is a multicomponent `BF' theory supplemented, crucially, with a topological term. A possible topological phase characterized by the thermal analog of the magnetoelectric effect is also discussed.

Highlights

Read more

Summary

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.