Abstract

AbstractThe intense extreme ultraviolet radiation heats the upper atmosphere of close-in exoplanets and drives the atmospheric escape. The escaping process determines the planetary evolution of close-in planets. The mass loss rate depends on the UV flux at the planet. We introduce the relevant physical quantities which describe the dominant physics in the atmosphere. We find that the equilibrium temperature and the characteristic temperature determine whether the system becomes energy-limited or recombination-limited. We classify the observed close-in planets using the physical conditions. We also find that many of the Lyman-α absorptions detected planets receive intenser flux than the critical flux which can be determined from physical conditions. Our classification method can quantitatively reveal whether the EUV is not strong enough to drive the outflow or the Lyman- α absorption is not detected for some reason (e.g. stellar wind confinement). We also discuss the thermo-chemical structure of hydrodynamic simulations with the relevant physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.