Abstract

The combination of increasing operational voltages beyond 1000 V in photovoltaic (PV) installations and the emergence of new PV technologies requires a critical assessment of the susceptibility to potential-induced degradation (PID). Since this failure mode can trigger significant and rapid power losses, it is considered among the most critical failure modes with a high financial impact. Insights in the physical mechanism of the performance loss and its driving factors are critical to develop adapted characterization methods and mitigation solutions. PID in p-type solar cells is triggered by sodium (Na) that diffuses into stacking faults of the silicon lattice, causing shunt paths through the pn-junction. In addition, it is hypothesised that for bifacial p-PERC solar cells positive charges, such as Na+, accumulate in/on the negatively charged AlOx rear passivation layer due to the potential difference between the glass and the rear cell surface. This significantly increases surface recombination. However, the degradation behaviour observed in bifacial monocrystalline p-PERC solar cells under PID stress from both sides (bifacial PID stress) does not match with just one of the degradation mechanisms. A comprehensive test matrix was carried out to understand the physical origin of PID in front emitter bifacial p-PERC solar cells in a glass/glass packaging. The results show that bifacial p-PERC solar cells under bifacial PID stress suffer from both shunting of the pn-junction and increased surface recombination at their rear side. Hereby, we prove that the glass/glass packaging in combination with bifacial solar cells can significantly increase the severity of PID.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.