Abstract
The data-driven methodologies can establish accurate Inverse Dynamics Model (IDM) of the excavator thus improving control precisions. However, the inherent black-box nature of these models often results in overfitting to the dataset, leading to predictions that deviate from the constraints of physical system. Consequently, this can lead to controller failures, introducing unpredictable behavior that threatens operation precision. In addition, the uncertainty of the external disturbance poses great challenge to the precision of controller. This study presents a physics-informed neural network to build accurate IDM with physical consistency. The Rigid Body Dynamics (RBD) of the excavator are coupled within a Deep Lagrangian Network (DeLaN), while a Convolutional Neural Network (CNN) and a Long Short-Term Memory Network (LSTM) are employed to assimilate the residual nonlinear characteristics, such as hydraulic flexibilities and stick–slip friction. To the uncertainty of the external disturbance, the Prescribed Performance Inverse Dynamics Controller combination with the DeLaN-CNN-LSTM model (PPIDC-DCL) is constructed for precise control by constraining the control error within a finite region. The experimental results demonstrate that the model captures the underlying structure of the dynamic and builds the IDM with high accuracy and robustness. Moreover, the PPIDC-DCL controller effectively constrains the control error and realizes precision control. The proposed method has potential applications and provides novel insights for achieving precise operation control of excavators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.