Abstract

This work concerns the application of physics‐informed neural networks to the modeling and control of complex robotic systems. Achieving this goal requires extending physics‐informed neural networks to handle nonconservative effects. These learned models are proposed to combine with model‐based controllers originally developed with first‐principle models in mind. By combining standard and new techniques, precise control performance can be achieved while proving theoretical stability bounds. These validations include real‐world experiments of motion prediction with a soft robot and trajectory tracking with a Franka Emika Panda manipulator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.