Abstract

Accurate prediction of remaining useful life (RUL) has been a key issue in the field of Prognostic and Health Management (PHM), which aims at predictive maintenance to improve equipment reliability and safety. Aiming at the problem that the existing RUL prediction methods are weak in perceiving long-term features and poor in capturing periodic dependence, which leads to inaccurate and seriously lagging RUL prediction results of rolling bearings, this article proposes a physics-informed bearing RUL prediction approach, namely multi-state temporal frequency network (MSTFN). Firstly, a physics-informed dynamic adaptive inverse discrete Fourier transform (IDFT) frequency domain block is constructed, which maps the spectral information from the known domain to the spectral interval of the unknown domain for extracting the periodic features of the sequence. Secondly, a residual self-attention multi-state gated control unit (RSA-MSGCU) is proposed, which incorporates a novel multi-state hierarchical division mechanism in memory cells to enhance the medium- and long-term feature perception capability. Based on RSA-MSGCU, a trend prediction time domain block is built to extract the trend features of the sequence. Finally, the periodic and trend features are fused to achieve compatibility between the IDFT physical model and the data-driven model and then make the final RUL prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call