Abstract

Remaining useful life (RUL) prediction and degradation assessment are pivotal components of prognostic and health management (PHM) and represent vital tasks in the implementation of predictive maintenance for bearings. In recent years, data-driven PHM techniques for bearings have made substantial progress through the integration of deep learning methods. However, modeling the temporal dependencies inherent in raw vibration signals for both degradation assessment and RUL prediction remains a significant challenge. Hence, we propose a joint optimization architecture that uses a temporal convolutional auto-encoder (TCAE) for the degradation assessment and RUL prediction of bearings. Specifically, the architecture includes a sequence-to-sequence model to extract degradation-sensitive features from the raw signal and utilizes temporal distribution characterization (TDC) and a nonlinear regressor to determine the degradation stages and predict RUL, respectively. Our framework integrates the tasks of degradation assessment and RUL prediction in a unified, end-to-end manner, using raw signals as input, resulting in high RUL prediction accuracy (RMSE = 0.0832) on publicly available and self-built datasets. Our approach outperforms state-of-the-art methods, indicating its potential to significantly advance the field of PHM for bearings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call