Abstract
Machine learning methods have recently shown a broad application prospect in biomass gasification modeling. However, a significant drawback of the machine learning approaches is their poor physical interpretability when relying on limited experimental data. In the present work, a physics-informed neural network method (PINN) is developed to predict biomass gasification products (N2, H2, CO, CO2, and CH4). PINN simultaneously considers regression, structure, and physical monotonicity constraints in the loss function, providing physically feasible predictions. Specifically, the PINN models have outperformed prediction capability (average test R2 0.91–0.97) compared to five other machine learning methods through 50 times random sample classifications. Furthermore, it is demonstrated that the developed models can maintain correct monotonicity even if the feedstock characteristics or gasification conditions are outside the training data. By using a reliable physical mechanism to guide machine learning, the model can ensure better generalizability and scientific interpretability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have