Abstract

Image-to-image translation (i2i) networks suffer from entanglement effects in presence of physics-related phenomena in target domain (such as occlusions, fog, etc), lowering altogether the translation quality, controllability and variability. In this paper, we propose a general framework to disentangle visual traits in target images. Primarily, we build upon collection of simple physics models, guiding the disentanglement with a physical model that renders some of the target traits, and learning the remaining ones. Because physics allows explicit and interpretable outputs, our physical models (optimally regressed on target) allows generating unseen scenarios in a controllable manner. Secondarily, we show the versatility of our framework to neural-guided disentanglement where a generative network is used in place of a physical model in case the latter is not directly accessible. Altogether, we introduce three strategies of disentanglement being guided from either a fully differentiable physics model, a (partially) non-differentiable physics model, or a neural network. The results show our disentanglement strategies dramatically increase performances qualitatively and quantitatively in several challenging scenarios for image translation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.