Abstract
Physical models of wildfires are of particular interest in fire behaviour research and have applications in firefighting, rescue and evacuation. However, physical models present a challenge as a result of the large computational resources they often require, especially for the analysis of large areas or when multiple scenarios are investigated. The objective of this paper is to explore the opportunity to reduce the computation time requested by physical wildfire models through application of a model order reduction technique, specifically the proper orthogonal decomposition (POD) technique. POD is here applied to a simple one-dimensional physical model. The full physical model for illustration of the concept is first tested with experimental data to check its ability to simulate wildfire behaviour; it is then reduced using the POD technique. It is shown that the reduced model is able to simulate fire propagation with only small deviations in results in comparison with the physical model (~6.4% deviation in the rate of spread, ROS) and a drastic reduction (~85%) in computational cost. The results demonstrate the advantages of applying effective reduction techniques to create new generations of fire models based on reduced physical approaches. The potential applicability of POD to more complex models is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.