Abstract

This work investigates the physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well (QW) ultraviolet (UV) light-emitting diodes (LEDs). The physics analysis shows that the use of the AlN-delta-GaN QW structure can ensure dominant conduction band (C) to heavy-hole (HH) subband transition and significantly improve the electron and top HH subband wave function overlap. As a result, up to 30-times enhancement in the transverse-electric (TE)-polarized spontaneous emission rate of the proposed structure can be obtained as compared to a conventional AlGaN QW structure. The polarization properties of molecular beam epitaxy-grown AlN/GaN QW-like UV LEDs, which consist of 3–4 monolayer (QW-like) delta-GaN layers sandwiched by 2.5-nm AlN sub-QW layers, are investigated in this study. The polarization-dependent electroluminescence measurement results are consistent with the theoretical analysis. Specifically, the TE-polarized emission intensity is measured to be much larger than the transverse-magnetic emission, indicating significant potential for our proposed QW structure for high-efficiency TE-polarized mid-UV LEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.