Abstract
This work fractionated waxy and normal wheat starches into highly purified A- and B-type granule fractions, which were representative of native granule populations within parent native wheat starches, to accurately assess starch characteristics and properties of the two granule types. Wheat starch A- and B-type granules possessed different morphologies, granule specific surface area measurements, compositions, relative crystallinities, amylopectin branch chain distributions, and physical properties (swelling, gelatinization, and pasting behaviors). Within a genotype, total and apparent amylose contents were greater for A-type granules, while lipid-complexed amylose and phospholipid contents were greater for B-type granules. B-type (relative to A-type) granules within a given genotype possessed a greater abundance of short amylopectin branch chains (DP n < 13) and a lesser proportion of intermediate (DP n 13–33) and long (DP n > 33) branch chains, contributing to their lower relative crystallinities. Variation in amylose and phospholipid characteristics appeared to account for observed differences in swelling, gelatinization, and pasting properties between waxy and normal wheat starch fractions of a common granule type. However, starch granule swelling and gelatinization property differences between A- and B-type granules within a given genotype were most consistently explained by their differential amylopectin chain-length distributions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have