Abstract

Continuous decline in potable water sources has raised serious concerns over human health. Developing countries are the most affected in this regard due to a lack of proper hygiene maintenance. Sikkim, an Eastern Himalayan state with mountains as the predominant topological features, harbors several perennial natural springs. Spring water is the primary source of potable water for the population in four districts of the state viz. East, West, North and South. Recent outbreaks of water-borne diseases and the relative lack of scientific studies on its potential correlation with the water quality of the area have educed this study. Physicochemical parameters of springs, community reservoirs, and household water were analyzed by ICP-MS and multi probe meter. Using the membrane filtration method, the microbial quality of the water samples during different seasons was assessed, primarily evaluating the presence of fecal indicators viz. Escherichia coli, total coliform and Enterococcus. The seasonal risk category of the water sources was also determined. Most of the physicochemical parameters of the spring water were within the permissible limits of WHO standards. However, water from four districts was recorded with traces of toxic heavy metals like mercury (0.001–0.007 mg/l), lead (0.001–0.007 mg/l), and selenium (0.526–0.644 mg/l), which are above the permissible limits of WHO. All the spring water samples were categorized as Mg-HC type and can be predicted as shallow fresh ground water based on the piper analysis. Microbial confirmatory testing indicated severe fecal contamination of water sources with high counts of total coliform (TC), Escherichia coli (EC) and Enterococcus (EN). The highest level of TC was recorded from West Sikkim (37.26 cfu/100 ml) and the lowest in North Sikkim (22.13 cfu/100 ml). The highest level of contamination of E. coli and Enterococcus was found in East Sikkim (EC = 8.7 cfu/100 ml; EN = 2.08 cfu/100 ml) followed by South Sikkim (EC = 8.4 cfu/100 ml; EN = 2.05 cfu/100 ml). There was a significant positive correlation between the contamination levels of the spring water and the community reservoir tank. As far as the seasonal variation is concerned, the rainy season showed the most contamination with coliform correlating with a high incidence of different water-borne diseases (East = 86%; West = 100%; South = 100%; North = 80%).

Highlights

  • Access to safe drinking water is critical to human health and development [1]

  • Principle component analysis and hierarchical clustering were done using R statistics to categorize the water source of four districts based on physicochemical characteristics and coliform count

  • Spring Water All the spring water (100%) in the month of July–August were in the category of intermediate risk level as per the classification of the WHO [21, 24]; 80% of the spring water from East Sikkim in the month of November–December was found to be at an intermediate risk level and 20% were at a low risk level, while 70% of the Spring water from South Sikkim in November– December was at an intermediate risk level and 30% was at a low risk level

Read more

Summary

Introduction

Access to safe drinking water is critical to human health and development [1]. Urbanization and increasing anthropogenic activity have wedged the Earth’s natural environment and negatively impacted human health [2]. Three main elements that significantly affect the quality of drinking water in water distribution network are the quality of raw water at the source, the purification process employed for water and the distribution system used for water [7]. Microbial contamination of drinking water remains a persistent serious problem in developing countries, including India. In India, sewage often finds its way into city drains and into the rivers, contributing to the poor quality of water sourced from the river. As a result of the poor quality of drinking water, diarrhea has become the fourth leading cause of death worldwide. In 2015 alone it caused an estimated 1.3 million deaths of children under the age of 5 years [11] Together, these facts warrant research on drinking water quality with respect to hydrochemistry and microbiology to ascertain the associated health risk for the residents of any area

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.