Abstract
We have assumed that the coevolution theory of genetic code origin (Wong JT, Proc Natl Acad Sci USA 72:1909-1912, 1975) is essentially correct. This theory makes it possible to identify at least 10 evolutionary stages through which genetic code organization might have passed prior to reaching its current form. The calculation of the minimization level of all these evolutionary stages leads to the following conclusions. (1) The minimization percentages increased linearly with the number of amino acids codified in the codes of the various evolutionary stages when only the sense changes are considered in the analysis. This seems to favor the physicochemical theory of genetic code origin even if, as discussed in the paper, this observation is also compatible with the coevolution theory. (2) For the first seven evolutionary stages of the genetic code, this trend is less clear and indeed is inverted when we consider the global optimisation of the codes due to both sense changes and synonymous changes. This inverse correlation between minimization percentages and the number of amino acids codified in the codes of the intermediate stages seems to favor neither the physicochemical nor the stereochemical theories of genetic code origin, as it is in the early and intermediate stages of code development that these theories would expect minimization to have played a crucial role, and this does not seem to be the case. However, these results are in agreement with the coevolution theory, which attributes a role to the physicochemical properties of amino acids that, while important, is nevertheless subordinate to the mechanism which concedes codons from the precursor amino acids to the product amino acids as the primary factor determining the evolutionary structuring of the genetic code. The results are therefore discussed in the context of the various theories proposed to explain genetic code origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.