Abstract

Finasteride is a practically insoluble in water drug that belongs to the Class II of the BCS (poor solubility and high permeability). Solid dispersions are solid products consisting of at least two different components, generally a hydrophilic matrix and a hydrophobic drug. Solid dispersions are a successful strategy to improve drug release of poorly water-soluble drugs such as finasteride. Natural cyclodextrins are doughnut-shaped molecules with an internal hydrophobic cavity and a hydrophilic external surface. The lipophilic cavity enables cyclodextrins to form non-covalent inclusion complexes with a wide variety of poorly water-soluble drugs such as finasteride. The aim of this study was to investigate the formation of finasteride:PEG 6000 and finasteride:Kollidon K25 solid dispersions and finasteride:β-cyclodextrin inclusion complexes by solvent evaporation method using a mixture of water:ethanol (1:1). The formation of finasteride:PEG 6000 and finasteride:Kollidon K25 solid dispersions and finasteride:β-cyclodextrin inclusion complexes was investigated and characterized by differential scanning calorimetry (DSC), infrared (IR) spectroscopy, and dissolution studies from capsules containing a quantity equivalent to 5 mg of finasteride. The DSC thermograms revealed the transformation of finasteride into the amorphous state in solid dispersions with PEG 6000 and Kollidon K25, and in inclusion complexes with β-cyclodextrin. The IR spectra demonstrated molecular interaction in solid dispersions of finasteride with PEG 6000, and in inclusion complexes with β-cyclodextrin. Dissolution rate of solid dispersions and inclusion complexes was significantly greater than that of corresponding physical mixtures and pure drug, indicating that the formation of solid dispersions and inclusion complexes increased the solubility of the poorly soluble drug, finasteride.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call