Abstract

In the present study structural characteristics and physicochemical properties of tri-component biomaterial (consisting of chitosan, β-1,3-glucan and hydroxyapatite) seeded with mesenchymal stem cells were investigated with the use of diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). In this study we use non-conventional approach of DRIFT spectroscopy for investigating biomaterial changes under simulated physiological conditions. Particular cell-induced changes were intended to be properly evaluated with analytical methods. Abovementioned techniques allowed to precisely assess the changes on the surface of the biomaterial caused by two kinds of stem cells (ADSCs – Adipose tissue-Derived Stem Cells and BMDSCs – Bone Marrow-Derived Stem Cells) cultured directly on the surface of bioceramic-based biomaterial. The bioactivity and biocompatibility of designed bone biomaterial were demonstrated and hence it seems to be a promising scaffold used in tissue engineering. Designed chitosan, β-1,3-glucan, and hydroxyapatite biomaterial was proven to be non-toxic, surgically handy with cellular compatibility. The obtained results are interesting and promising in terms of spectroscopic methods suitability for qualitative assessment of material-cell interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.