Abstract

Protose is the enzyme digest of mixed proteins that is recommended for culture media, bulk production of enzymes, antibiotics, toxins, veterinary preparations, etc. This study was proposed to evaluate the effect of biofield energy treatment on the physicochemical and spectroscopic properties of protose. The study was achieved in two groups i.e. control and treated. The control group was remained as untreated, while the treated group was received Mr. Trivedi’s biofield energy treatment. Finally, both the control and treated samples were evaluated using various analytical techniques. The X-ray diffractograms (XRD) of control and treated samples showed the halo patterns peak that suggested the amorphous nature of both the samples of protose. The particle size analysis showed about 12.68% and 90.94 increase in the average particle size (d50) and d99 (particle size below which 99% particles are present) of treated protose with respect to the control. The surface area analysis revealed the 4.96% decrease in the surface area of treated sample as compared to the control sample. The differential scanning calorimetry (DSC) analysis revealed the 22.49% increase in the latent heat of fusion of treated sample as compared to the control. Thermogravimetric analysis (TGA) analysis showed increase in maximum thermal degradation temperature (Tmax) by 5.02% in treated sample as compared to the control. The increase in Tmax might be correlated with increased thermal stability of treated sample as compared to the control. Fourier transform infrared (FT-IR) study showed the alteration in the vibrational frequency of functional groups like N-H, C-H, and S=O of treated protose as compared to the control sample. Based on the overall analytical results, it is concluded that Mr. Trivedi’s biofield energy treatment has a significant impact on the physicochemical and spectral properties of protose. As a result, the treated protose might be more effective as a culture medium than the corresponding control.

Highlights

  • Growth medium or culture medium is a liquid or gel that is designed for the growth of microorganisms, cells or small plants such as moss [1]

  • It is assumed that the biofield energy probably induce the agglomeration process in treated protose sample, which resulted into increases of average particle sizes of treated sample

  • The particle size analysis suggested the significant increase in the particle size i.e. d50 and d99 of the treated protose with respect to the control

Read more

Summary

Introduction

Growth medium or culture medium is a liquid or gel that is designed for the growth of microorganisms, cells or small plants such as moss [1]. Protose is a specially developed product containing various combinations of proteoses, peptones and amino acids [3]. It is an enzymatic digest of mixed proteins, and recommended for fermentation and vaccine industries [4, 5]. It is an exceptionally light colored peptone, which gives clear solution. It is used in culture media for bulk production of enzymes, antibiotics, toxins, veterinary preparations, etc. Biofield energy treatment has been assessed in the numerous fields and reported to alter numerous properties of living organisms and non-living things [7, 8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.