Abstract
We have synthesized a series of short peptides (17 to 20 amino acids), originally derived from Limulus anti-lipopolysaccharide factor LALF, which were primarily designed to act as antimicrobial agents as well as neutralizers of bacterial endotoxin (lipopolysaccharide, LPS), Here, two selected peptides, a 17- and a 19-mer, were characterized physicochemically and in biological test systems. The secondary structure of the peptides indicates essentially a β-sheet including antiparallel strands, the latter being reduced when the peptides bind to LPS. A very strong exothermic binding due to attractive Coulomb interactions governs the LPS-peptide reaction, which additionally leads to a fluidization of the acyl chains of LPS. A comparison of the interaction of the peptide with negatively charged phosphatidylserine shows in contrast a rigidification of the acyl chains of the lipid. Finally, the biological assays reveal a diverging behaviour of the two peptides, with higher antibacterial activity of the 17-mer, but a much higher activity of the 19-mer in its ability to inhibit the LPS-induced cytokine production in human mononuclear cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.