Abstract

The experimental kinetics for γ-lactone formation shows more complexity than that for acids. Nonetheless, it can be concluded to the existence of a constant rate of formation from the beginning of the experiments with polyethylene melts. There is an additional term contributing to γ-lactone formation in the initial stages that is cubic in processing time. In the advanced stages of processing, in the high temperature range (170–200 °C), the concentration of γ-lactones increases linearly with the processing time. There are many mechanisms susceptible to give γ-lactones on polyethylene melt processing. Some of them are based on decomposition of intermediates formed directly on chain propagation. This is so for the α,γ-keto-hydroperoxides in 4-position to hydroxyl groups. Since decomposition of these intermediates is very fast, the reaction might account for a constant rate of γ-lactone formation from the beginning of polyethylene processing. Decomposition of the α,δ-keto-hydroperoxides formed on intramolecular reactions on chain propagation is not so fast as that of the α,γ-keto-hydroperoxides. Nonetheless, it might account for part of the delayed formation of γ-lactones. The same is valid for the mechanisms based on peroxidation of aldehydes and γ-hydroxy trans-vinylene groups that involve intermediates that are formed on polyethylene peroxidation. They might be important for explaining the cubic term as well as γ-lactone formation in the advanced stages of polyethylene processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.