Abstract

Oxidation of aldehydes and γ-hydroxy- trans-vinylene groups can yield γ-lactones. These intermediates account for γ-lactone formation in the advanced stages of polyethylene processing in air. The acyl-peroxy radical formed on free radical induced oxidation of aldehydes can abstract intramolecularly a δ-hydrogen atom to yield a peracid. Reaction of the alkyl radical formed in this reaction with the hydroperoxide group of the peracid gives a γ-lactone with simultaneous release of a hydroxyl radical. The calculated rate of γ-lactone formation according to the mechanism envisaged decreases slightly with increasing temperature (activation energy of about −5 kcal/mol). It is in agreement with the experiments that do not show significant activation energy in the high temperature range for the advanced stages of polyethylene processing. The calculated rate of γ-lactone formation is found to increase by a factor of about 2.7 if the processing experiments are performed in pure oxygen instead of in air. This is close to the experimental factor of about 2. Peroxidation of γ-hydroxy- trans-vinylene groups can also yield γ-lactones. The first possibility involves addition of a peroxy radical to the double bond followed by oxygen addition to the alkyl radical. This reaction possibly yields an α-peroxy-hydroperoxide. Intramolecular decomposition involving the two reactive groups of the α-peroxy-hydroperoxide can give an ozonide that on thermal decomposition yields among others an acid group in 4-position to the alcohol. The activation energy calculated is strongly negative so that the rate should decrease strongly with increasing temperature. Hence, the mechanism cannot contribute significantly to γ-lactone formation in the whole temperature range of the experiments. This is so in spite of the fact that the rate is estimated to increase by a factor of about 1.7 on passing from air to pure oxygen, which is close to the experimental value of approximately 2. The second possibility of transformation of γ-hydroxy- trans-vinylene groups is based on stress-induced oxygen addition to the double bond. Acid catalyzed decomposition of the allylic hydroperoxide that is formed in the reaction yields a pair of aldehydes with one of the aldehyde groups in 4-position to the alcohol group. Peroxidation of the aldehyde pair can give an acid group in 4-position to the hydroxyl group so that a γ-lactone can be formed. The activation energy calculated for the process is very small and the effect of the oxygen concentration corresponds to an increase by a factor of approximately 4.5 on passing from air to pure oxygen. It is postulated that simultaneous contribution by different mechanisms might well account for the experimental value of about 2. The heterogeneous kinetics discussed in detail allows for complementary data interpretation. It is especially suited for the understanding of the advanced stages of polyethylene processing, after some induction time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.