Abstract
The rate of acid formation at high temperature is constantly increasing but temperature independent. Two main mechanisms can account for this behavior in the advanced stages of polyethylene processing. The first mechanism is based on free radical induced oxidation of aldehyde pairs that are formed on acid-catalyzed decomposition of allylic hydroperoxides. The last will be formed essentially on mechanical stress-induced oxygen addition to trans-vinylene groups. Peroxidation of one of the aldehydes might yield an acyl-peroxy radical that is likely to abstract the labile hydrogen atom from the second aldehyde. The acyl radical formed in the reaction will abstract a hydroxyl group from the peracid formed in the same reaction. This yields an acid and an acyl-oxy radical that will give a primary alkyl radical on decarboxylation. The second mechanism involves oxidation of ketones and alcohols that accumulate in the oxidizing melt. Acid-catalyzed decomposition of the α-keto-hydroperoxides yields simultaneously an acid and an aldehyde. Formal kinetics based on each mechanism shows that they do not involve significant activation energy, as it is required by the experimental data. The dependency on the oxygen concentration deduced from the formal kinetics for the oxidation of aldehyde pairs is in agreement with the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.