Abstract

Formation of carboxylic acids at a constant rate can be easily explained. It seems to result from the formation and decomposition of α,γ-keto-hydroperoxides. Formal kinetics based on formation and decomposition of these structural units is in agreement with the experimental findings. The activation energy deduced from the calculations is negligible, in agreement with the experimental data showing the constant rate to be practically temperature independent. Comparison of the acids with the hydroperoxides and ketones formed initially shows that the rate of oxygen addition to alkyl radicals is significantly smaller than in low molecular mass liquids. The same conclusion is reached on comparing directly the acids formed on decomposition of α,γ-keto-hydroperoxides in polyethylene melt and in hexadecane. The rate of oxygen addition in polyethylene melt is closer to 2 × 10 5 than to 6 × 10 5 (s −1) that is valid in hexadecane. It is possible to attribute the relatively small amount of aldehydes that might be formed at a constant rate to different reactions of alkoxy radicals that are not in a cage with other radicals. These alkoxy radicals result from the addition of peroxy radicals to unsaturated bonds. This addition is followed mainly by epoxide formation and simultaneous release of an alkoxy radical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call